1 These slides/notes represent only part of the course, and were
accompanied by face-to-face explanations on white-board and
additional topics / learning materials.

[ In preparation of these slides | have also benefited from various
books and online material.

[ Some of the slides contain animations which may not be visible
in pdf version.

 Corrections, comments, feedback may be sent to
https://www.linkedin.com/in/naveedrazzagbutt/
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Introductions ...

* Me
* You
* The Course
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Important Business!!

* 75% attendance is mandatory!

* Textbooks

e Peyton Z. Peebles, JR, Probability, Random Variables and Random Signal Principles, 4th
Edition, McGraw-Hill, 2002

 D.C. Montgomery & G. C. Runge, Applied Statistics and Probability for Engineers, 6th Edition,
Wiley, 2013
* Contact

e nbutt@ju.edu.sa
e office: 1140



mailto:nbutt@ju.edu.sa

Learning Plan Weightage

HFinal EMid1l ®EMid2 = Quizzez H Project

* Lectures
* Help discover and grasp new concepts

* Quizzes (six)
* Help prepare/revise each week’s concepts
* Keep you from lagging behind in course

* Course Project
* Helps learn independent work & presentation
* Prepares for final year project

* Exams (Mid-1, Mid-2, Final)
* Help prepare entire course material

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University



Assessment Plan © av

Course project

Mid-Term

Final
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N this course we will see ...

* What is “probability” and what are its fundamental principles
* How can probabilities be assigned to different kinds of events
 What are the different types of random variables

 What is meant by a probability distribution and what are the
different common probability distributions

* How can we see the link between various random events
* What are random processes and some of their characteristics



Course Learning Objectives (CLOs)
clo# |Domain |Descrption | assessmemt

CLO 1 Cognitive Skills ~ Calculate probabilities of events, joint probabilities, Hw, Quiz, Mid,
conditional probabilities using set operations and definition of Fjnal
probability. Justify valid and invalid probability assignments,
and independence of events.

CLO 2 Cognitive Skills ~ Calculate probability mass function parameters, moments and Hw, Quiz, Mid,
functions of discrete single and multiple random variables. Final

CLO 3 Cognitive Skills ~ Calculate probability density function parameters, moments Hw, Quiz, Mid,
and functions of continuous single and multiple random Fjnal
variables.

CLO 4 Cognitive Skills  Analyze random processes and effects of linear systems on Hwj, Final
random processes

CLO5 Communication Demonstrate the ability to research a topic related to Project
probability and formally present the results Presentation

EE 302 - Probabilistic Methods in Electrical Engineering / Dr.
Naveed R. Butt @ Jouf University



What is “probability”?
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What is “probability”?

* Probability is a “lack of knowledge”!
* We know you are here today. We are sure.

* But will you be here in the next lecture? We are not sure anymore! There is
now a “lack of knowledge”

n u n

e “perhaps”, “maybe”, “probably”



Why do we sometimes lack knowledge?

EE 302 - Probabilistic Methods in Electrica

What An Electron Isn't

What An Electron Is

| Engineering / Dr. Naveed R. Butt @ Jouf University
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Why do we sometimes lack knowledge?

 Future

* A dice you haven’t rolled yet
* How can we know which number it will show!

 Too hard to collect all the information

* Which places did you visit today?

* It may be possible to have a drone camera follow you all the time. Then we will not have
“lack of knowledge” about places you go to. But this is too hard a thing to do.

 Quantum randomness

e Where’s the electron?

* According to current consensus, processes and properties at quantum level are
probabilistic by their very nature.



Why study probability?

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
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Why study probability?

* Height of the next student who enters the room.



Why study probability?

* Height of the next student who enters the room.
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Why study probability?

* Height of the next student who enters the room.
* There is lack of knowledge about it!

* But that lack of knowledge is not “absolute”

 We do know something about the heights of humans and can make some “guesses”
based on whatever information we have (based on observation, experience, statistics)

* Such guesses can help us design the height of the doorway (for instance).



Probability theory helps us make sense of an
uncertain world!

* It helps us make smart guesses about uncertain events

* Based on the smart guesses we can plan, design, or take steps to
better control the situation



Questions?? Thoughts??

A

2

-

P -
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A set of possibilities ...
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A set of possibilities ...

e Suppose we roll a dice

* Before we can say something about the possibility of seeing a

particular number, we have to determine what is possible and what is
not.

* We need to define a set of possibilities for the dice rolling!

“Set” of possible
outcomes

“Set” of impossible
outcomes

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University



A set of possibilities ...

“Set” of possible
outcomes

/'

Universal Set or Sample Space
(S) for the die rolling experiment
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“Probability” and “Sets” go hand-in-hand!

e Understanding sets is an important part of understanding probability.



Definition: Set

* A setis a collection of objects
* The objects are called “elements” of the set

A={a,b,c, d}
acA

e A



My students ...

Dr. Naveed'’s
students

A

Students in

EE302 Students in

EE328
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Basic set operations...

Dr. Naveed'’s
students

(assuming | am teaching only two courses this term)

B = { my students in EE302 }
C ={ my students in EE328 }
B U C = my students who are in EE302 or in EE328 =

all of my students this term

BN C = my students who are in both EE328 and

EE302 (multicolor)
B — C = my students who are in EE302 but not in
EE328 (yellow)
C — B = my students who are in EE328 but not in
EE302 (red)

Students in

EE302 Students in

EE328

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University



Dr. Naveed'’s
students

We also see that:

D € C (all elements of D are also in C)

BUC=CUB
BNC=CnB
B-C+C-B

A—(BUC =0 (emptyset)

Students in

EE302 Students in

EE328

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University



Set Operation Venn Diagram Interpretation

A U B, is the set of all
values that are a member

Union of A, or B, or both.

A n B, is the set of all
values that are members

Intersection of both A and B.

A\ B, is the set of all
values of A that are not

Difference members of B

EE 302 - Probabilistic Methods in Electrical Engineering / Dr.
Naveed R. Butt @ Jouf University
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Some formal definitions ...

* An “empty” set is a set with no elements
* 0 ={}
* Two sets A and B are “mutually exclusive” or “disjoint” if they have
no common elements
cANB=20
* A “universal set” is the largest or all-encompassing set of objects
under discussion (usually denoted S or U)

* The complement of a set A is a set of all elements not in A
«A=S-A



Some formal definitions ...

* Two sets are “equal” if they are both subsets of each other (i.e., they
have exactly the same elements)

cifAcCBandB € AthenA=B



Set Operations and Venn Diagrams

Set A A’ the complement of A
U U
A B 4
A and B are disjoint sets B is proper Bc A
subset of A

EE 302 - Probabilistic Methods in Electrical Engineering / Dr.
Naveed R. Butt @ Jouf University



Three Ways of Defining a Set

* A set may be defined in three ways
e Tabular method: we list (write) all the elements of the set
* Rule method: we describe a rule for elements of the set
* Operation method: we define the set as a result of some operation

Tabular A = {Abdallah, Mishari, Yazeed, Bandar, Basil, Badr, Abdullateef, Samir}
Rule A = {students in EE302 second semester 2019}

Operation C=B-A



Notation

 Notation for Union and Intersection when more than two sets are
involved

e Recall that that when we add several variables we can denote the sum by
using the symbol “sigma”

H
Y xi=x;+xy+X3+...+X,,.
i=l

* Similarly, union and intersection of several sets can be denoted as

N
(' — 41 U /13 LJ P e L) ;43\' — U /4,,
n=|

.‘\.
/) —_— .“1! rl a“l: {-“ 2L {\ _/4’\1 — ﬂ ‘-"l”



Some properties of sets...

 Commutative, distributive and associative properties of union and
intersection.

AUB=BU 4 AUBNC)=(AUB)N(4U C)

(AUBIUC=AUBUC)=AUBUC
(ANBNC=ANBNC)=ANBNC

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
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Some properties of sets...

* De Morgan’s Laws

(AUB) =.

(AN B) =

EE 302 - Probabilistic Methods in Electrical Engineer

|
oy J

N
.
wof

ing / Dr. Naveed R. Butt @ Jouf Univers
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Some properties of sets...

e Duality Principle

* “if in an identity we replace unions with intersections, and intersections with
unions, and also replace universal set (S) with empty set (@), and empty set
with universal set then identity remains valid”.

ANBUC)=(ANBUANC)
If one is valid, then so is the
Il other!

AU(BNC)=(4AUB)N(4UC)

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University 18



Example Problems
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Questions?? Thoughts??

A

2

-

P -
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In the last lecture, we saw that ...
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Quick Revision (1)

. . . A={ab,cd}
e A set is a collection of objects aed
e ¢ A

* Objects in a set are called elements of the set
* We often need sets to define probabilities

* The set of all possible outcomes in a situation is called the universal
set or sample space (denoted S)

* A set with no elements is called an empty set (denoted @ or {})

 We saw how some sets are related to each other
« Subset: when all the elements of set A can be found insetB (4 & B)
e Equality: when two sets have exactly the same elements (A = B)



Set = collection of objects

Students in
EE302
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« Subset: when all the elements of set A can be found insetB (4 & B)
e Equality: when two sets have exactly the same elements (A = B)



A set of possibilities ...

“Set” of possible
outcomes

/'

Universal Set or Sample Space (S)
for the die rolling experiment
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Quick Revision (1)

. . . A={ab,cd}
* A set is a collection of objects aed
e ¢ A

* Objects in a set are called elements of the set
* We often need sets to define probabilities

* The set of all possible outcomes in a situation is called the universal
set or sample space (denoted S)
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My students...

Dr. Naveed'’s
students

A

Students in

EE302 Students in

EE328
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Quick Revision (2)

* We saw how we can check equality of two sets
- ifAcCBandB € AthenA =B

We learned that two sets are completely different (mutually exclusive or disjoint)
if they have no elements in common

* Check for mutual exclusiveness: 4 N B = @

* We also saw some operations we can perform on sets
* Union: A U B take all the elements of the sets A and B
* Intersection: A N B =take only those elements which are common between A and B
* Difference: B — A = remove from B all those elements which are also present in A
« Complement: A =S — A (remove all elements of set A from universal set S)

Finally, we discussed some useful properties of set operations
 Commutative, Distributive, Associative
* De Morgan’s Laws
* Duality Principle
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My students...

Dr. Naveed'’s
students

A

B = { my students in EE302 }
C ={ my students in EE328 }
B U C = my students who are in EE302 or in EE328 =

all of my students this term

BN C = my students who are in both EE328 and

EE302 (multicolor)
B — C = my students who are in EE302 but not in
EE328 (yellow)
C — B = my students who are in EE328 but not in
EE302 (red)

Students in

EE302 Students in

EE328
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Quick Revision (2)

* We saw how we can check equality of two sets
- ifAcCBandB € AthenA =B

We learned that two sets are completely different (mutually exclusive or disjoint)
if they have no elements in common

* Check for mutual exclusiveness: 4 N B = @

* We also saw some operations we can perform on sets
* Union: A U B take all the elements of the sets A and B
* Intersection: A N B =take only those elements which are common between A and B
* Difference: B — A = remove from B all those elements which are also present in A
« Complement: A =S — A (remove all elements of set A from universal set S)

Finally, we discussed some useful properties of set operations
 Commutative, Distributive, Associative
* De Morgan’s Laws
* Duality Principle



ANB=8BNA

Commutative
Property AUB=BU A
Distributive AN(BU C)= (4N B)U (AN C)
property AUBNC)=(AUB)N(4U Q)
Associative (AUB)UczAU(BUC)=AUBUC
Property

(ANBNC=ANBNC)=ANBNC

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
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wy T

De Morgan’s (AU B) = AN

Laws

(ANB)=AUB

AN (B U C) —_ (A M B) U (A M C) “if in an identity we replace unions with

Dualit intersections, and intersections with
.ua.l / Il unions, and also replace universal set (S)
Principle

with empty set (D), and empty set with

AU ( BN C) S ( AU B) M ( A U C) universal set then identity remains valid”.

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University 18



Today ...

* We will go through some examples

* And, see how we can assign probabilities to random events
 What is the process?
 What are the conditions?



Definition: Random Event

* An outcome (or result) we are not sure about.

 Example: when we toss a coin the occurrence of a head or tail is a random
event.



Defining “Probability” of a Random Event

# of ways A can occur

P(A) =
(4) total # of outcomes

EE 302 - Probabilistic Methods in Electrical Engineering / Dr.
Naveed R. Butt @ Jouf University
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A set of possibilities ...

“Set” of possible
outcomes

/'

Universal Set or Sample Space
(S) for the die rolling experiment

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
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How do we assign probabilities to random
events?

 What is the process?
e What are the conditions?



Let’s play ...

* Assume there is a bag with only one ball in it which is yellow

* You put your hand in the bag, and without looking, take a ball out and note its
color

* What are the possible outcomes?

S = {Yellow}

Set of all the
possible outcomes



Let’s play ...

 What is the probability that the ball you draw is yellow?

oucomeofour A = {Ball drawn is Yellow} et

interest

Set of all the S — {Yel IOW} Universal Set

possible outcomes

P(A):#ofwa}rs A can occur P(A) — P(ye”OW ba“) — 1 100% (sure)

total # of outcomes



Let’s play ...

* Now assume there are two balls in the bag, yellow and red

* You put your hand in the bag, and without looking, take a ball out and note its
color

* What are the possible outcomes?

Set of all the / S = {Ye”OWI REd} fr"-'.

possible outcomes

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
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Let’s play ...

 What is the probability that the ball you draw is yellow?

oucomeofour A = {Ball drawn is Yellow} et

interest

Set of all the S = {YQ”OW, Red} Universal Set

possible outcomes

P(A):#ofwaysAcau occur P(A) — P(ye”OW ba”) — 1/2 50% chance

total # of outcomes

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
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Let’s play ...

 What is the probability that the ball you draw is yellow?

ourcomeofour A = {Ball drawn is white}  fent

interest

Set of all the S = {YQ”OW, Red} Universal Set

[“4,
possible outcomes By

P(A) = # of ways A can occur P(A) — P(Wh |te ba I |) — O impossible

total # of outcomes

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
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Let’s play ...

 What is the probability that the ball you draw is yellow or red?

outcomeofour A = {Ball drawn is Yellow or Red}  fven

interest

Set of all the S = {YQ”OW, Red} Universal Set

possible outcomes

play- 2w Acmoccn  P(A) = P(red or yellow ball) =1

total # of outcomes

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
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Let’s play ...

 Assume we throw a die, and note the number it shows
 What are the possible outcomes now?

S={123456} '

L
Set of all the 4 n®
possible outcomes [ ®



/
Let’s play ...
p y We use this “size” or element
counting approach only if all

events are equally likely

 What is the probability that it shows 47? (equally likely = have equal

chance of happening)

Outcome of our A = {ShOWS 4} Event

interest

Set qfallthe S — {1 2 3 4 5 6} Universal Set | 'y O -

possible outcomes ) » ™
o0

P(A):#ofwa}-’s A can occur P(A) — 1/6 — SIZE(A)/SIZE(S)

total # of outcomes



Let’s play ...

 What is the probability that it shows an even number?

Outcome of our A = {ShOWS 2’ 4’ or 6} Event

interest

Set qfallthe S — {1 2 3 4 5 6} Universal Set | 'y O -

possible outcomes ) » ™
o0

P(A):#ofways A can occur P(A) — 3/6 — SIZE(A)/SIZE(S)

total # of outcomes




Let’s play ...

* What is the probability that it shows a number from 1 to 67

Outcome of our A = {ShOWS 1’2'3’4’5’0r 6} Event

interest
Set qfallthe S — {1 2 3 4 5 6} Universal Set | 'y O -
possible outcomes ) » ™

P(A):#ofwa}-’s A can occur P(A) — 6/6 — SIZE(A)/SIZE(S)

total # of outcomes




Assigning probabilities is a five-step process

e Step 1: Define the experiment
* “let’sroll a die”

» Step 2: Define all the possible outcomes of the experiment, i.e., define the
universal set that applies to your experiment

« S={123456)
 Step 3: Define what outcome you would like to see (we call it “event”)
* A ={die show even number}={2 4 6}
¢ Step 4. ASSign prOba blllty to the event P(4) = # of ways A can occur
o p(A) = 3/6 =1 "7 total # of outcomes
e Step 5: Make sure that the assigned probabilities “make sense”
 The Three Conditions (discussed later today)!




Example Problems

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
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Event Types: Equally Likely

* Equally Likely
* Events that have equal chances of occurring are called “equally likely” events
* E.g., when tossing a coin, there are equal chancesof Hand T
* Sometimes we use common sense to claim that some events are equally likely
* At other times we may be given equal probabilities assigned to events, and consequently
may claim them to be equally likely



Event Types: Mutually Exclusive

e Mutually Exclusive
* Events that cannot occur at the same time are called mutually exclusive
* E.g., when tossing a coin a head (H) and tail (T) cannot occur at the same time

* In sets, we check it this way: if the intersection of two events is empty set then they are
mutually exclusive

Two events, denoted as £, and £,, such that

are said to be mutually exclusive.

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
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Event Operations: Probability of a Union

P (A or B)

P(4 U B) = P(4) + P(B) — P(4 N B)

[f 4 and B are mutually exclusive events,

P(4 U B) = P(4) + P(B)

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
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Event Operations: Probability of a Union

P(4UBU C) = P(4) + P(B) + P(C) — P(4 N B)
— P(ANC)—P(BNC) + PAN BN C)

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
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Event Operations: Probability of Intersection

P(A and B) = P(A N B)

* When we assigh probabilities to two or more events happening at the
same time, we call it joint probability

* More on this later...



Event Operations: Probability of Complement

P (not E)

P(E") = 1 — P(E)

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University

41



Assigned probabilities must satisfy three conditions!!

e Condition 1: Assigned probabilities should not be negative or greater than 1.
0=PE)=1
* Condition 2: Universal set should cover all the possible outcomes
P(S) = 1

* Condition 3: Probabilities assighed to mutually exclusive events should make
sense

For two events E, and E, with £, N E, = &

P(E\ U E;) = P(E;) + P(E)

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University 42



Let’s check ...

S={123456} Universal Set

A={1},B={2},C={3},D={4},E={5},F={6},G={246},.. Events
Assigned \/
P(A)=1/6, P(B)=1/6, P(C)=1/6, P(D) =1/6, P(E) =1/6, P(F) =1/6, P(G) =1/2 probabilities are
not negative
P(S) =P (die shows 1, 2, 3,4,5,0r6)=1 Defined universal set covers ‘/
all the possible outcomes
P(A U B) = P(A) + P(B)

_ Mutually exclusive events &€ ..“
PIAUBUC)=P(A)+P(B) +P(C) satisfy the third condition v P
etc... o 0

00
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Example Problems
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Previously, we played dice...

 We throw a die, and note the number it shows
* What are the possible outcomes?

 What is the probability that it shows 47?

Outcome of our A = {ShOWS 4} Event

interest

possible outcomes

Set of all the S — {1 2 3 4 5 6} Universal Set '

P(A) = 1/6 = size(A)/size(S)

We were assigning probabilities to
individual events




Sometimes we need to assign probabilities to
multiple events!!

 Let’s say its 8 am, and let’s define two events

A ={Aliis in lecture} Event one
B = {Ali is sleeping} Event two

* What is the probability that Ali is in lecture and sleeping?

P(A and B)



Joint Probability

* When we assigh probabilities to two or more events happening at the
same time, we call it joint probability

P(A and B)

* Using sets, we can define the joint probability of two events as

P(A and B) = P(A N B)



Let’s play again ...

 We throw a die, and note the number it shows

e Let us define two events of interest

A = {shows odd number}  Eventone

B = {shows even number} Eventtwo
S = {]_ 2345 6} Universal Set
P(Aand B)=P(ANB)=0 How?

A N B = {} (empty) J
P(A N B) = size(A N B)/size(S) = 0/6=0
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Let’s play again ...
 We throw a die, and note the number it shows

C ={shows 1, 2 or 3} Event one
D = {shows 2, 3, or 4} Event two

S = {]_ 2345 6} Universal Set

P(Cand D)=P(CND)=1/3  How?

CNnD={23} ' ,
P(C N D) =size(C N D)/size(S) = 2/6=1/3
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Sometimes knowledge of one random event can help us
assign probability to another random event

A ={Aliis in lecture at 8 am} Event one
B = {Ali is sleeping at 8 am} Event two

e Suppose | tell you that Aliis in the lecture at 8 am. Now what are the
chances that he is sleeping?

P(B given A)



Let’s toss a coin ...

e Suppose | toss a coin but do not show you the result
 What is the probability that it shows Head?
A ={shows Head}
e S={H T} (universal set)
¢ P(A) =%

e Suppose now that | tell you that it shows Tail
* Now what is the probability that it shows Head?



Let’s toss a coin...

Situation before additional information

A = {shows Head}

S={HT} Universal Set

P{A}=1/2

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University

Situation after additional information

A = {shows Head}

“H” is no longer in

S = {D(T} /the set of

possibilities (it has
become impossible)

P{A| new information} = 0 —
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Another example ...

e Suppose | write a number from 1 to 4 on a piece of paper but do not
show you what | wrote

 What is the probability that | wrote 3?
* A ={wrote 3}
 S={12 34} (universal set)
* P(A) =size(A)/size(S) =%

 What is the probability that | wrote an odd number?
e B={wrote 1 or 3}
 S={12 34} (universal set)
* P(B) =size(B)/size(S) =2/4 ="

* Suppose now that | tell you that | wrote an odd number.
* Now what is the probability that | wrote 3?



Another example ...

Situation before additional information Situation after additional information

A = {wrote 3} A ={wrote 3}

S={1234} Universal Set B = {wrote odd number}

P{A} =% Spew = {1 X34} Updated

Universal Set

P{A given B} = P{A|B}=1/2
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Conditional Probability

* When we assign probabilities to an event assuming (or knowing) that
another has happened, we call it conditional probability

P(A given B) also written as P(A I B)

e Using sets, we define the conditional probability as
Joint probability

of Aand B
o(a | B) < PANB)

P(B)

Important assumption : P(B) #0




Let’s play again ... A = {shows 1, 2 or 3}

 We throw a die, and note the number it shows B = {shows 2, 3, or 4}

S={123456}
_P(ANB) 1/3 _
P(A | B) = P (B) _m_2/3
How?

ANB=1{23}

P(A N B) = size(A N B)/size(S) = 2/6=1/3

P(B) = size(B)/size(S) = 3/6=1/2
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Example Problems
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Independence : when knowledge of one event
does not change the probability of another

* Sometimes knowledge of one event does not affect the probability of
another event.
* |n such a situation, we say that the two events are statistically independent

* Example: knowing what time | woke up this morning will not affect the result
of a coin toss

* How can we check independence?

_ Test 1: If the conditional probability remains
P(A I B) =P (A) unchanged, then the two events are independent

P(A N B) = P(A) P(B Test 2: If the joint probability is simply the product of
( ) ( ) ( ) individual probabilities, then the two events are independent
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When we know events are independent...

* An important consequence of knowing that two events are
independent is that we can use the following substitutions where
needed

P(A'] B) =P (A)

P(A N B) =P(A) P(B)



Can we check independence of more than
two events?

* Yes!

* For three events to be statistically independent, all their combinations
should satisfy test 2, i.e., they must satisfy all of the following

P(A; N Ay) = P(A;)P(A4,)
P(A, N A3) = P(A,)P(A3)
P(A, N 43) = P(A;)P(A3)
P(4, N A, N A3) = P(A4,)P(4,)P(A43)

e Similarly, for N events to be statistically independent, all their combinations
should satisfy test 2.

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
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Example Problems
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Two formulas that help us in assigning
probabilities

Events B, must satisfy
these conditions

N
Total Probability P(4) = Z P(A] B,)! 182.) N

n=]| U B =N

P(’”BH)P(BN) Bm M B” — (/)
P(A)

Bayes’ Theorem P( Bn FUE—

i.e., these should be
mutually exclusive and
should cover all S.
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Example Problems
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Counting

* In assigning probabilities we often need to “count” how many ways
something can happen
* Toss a coin twice, and define event
* A ={we get at least one Tails}
S={HHHTTHTT}
Count total number of ways two coin tosses can result: four (HH, HT, TH, TT)
Count number of ways A happens: three (HT, TH, TT)
P(A)=3/4



Counting: Two Questions to Ask

* Questionl: Does order matter?
* Question2: Is repetition (replacement) allowed?



Questionl: Does order matter?
Question2: Is repetition allowed?

Game: choose two of these and | will give 10
Riyals to each. Cannot choose same person twice. \

Here:
(1) ORDER DOESN’T MATTER
(2) REPETITION NOT ALLOWED

Possible choices: three

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
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Questionl: Does order matter?
Question2: Is repetition allowed?

Game: choose two of these. | will give 10 ° @ °
Riyals to first one and 5 Riyals to second one.

Cannot choose same person twice.

Here:

(1) ORDER MATTERS

(2) REPETITION NOT ALLOWED

Possible choices: six @ @ @ @
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Questionl: Does order matter?
Question2: Is repetition allowed?
You are allowed to choose the same person

twice.

Here:
(1) ORDER MATTERS
(2) REPETITION IS ALLOWED
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Game: choose two of these. | will give 10
Riyals to first one and 5 Riyals to second one.

Possible choices: nine @ @

Note: most number of possibilities when order

matters and repetition is allowed!



Recall5!=5x4x3x2x1

How to choose counting formulal And 01 -

Total objects =n Note: for “without replacement” cases
Objects to choose (or number of places tofill) =r r<n

Order Repetition
Allowed? “
Use Powers
n!
np —
Yes No Use Permutations " (n—-r1)!
n!
No No Use Combinations "Cr —
(n—7r)!r!

EE 302 - Probabilistic Methods in Electrical Engineering / Dr.
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Applying the counting formulas

: n!
Game: choose two of these three (Hle)rgRDER DOESN'T MATTER R ey T
students and | will give 10 RlyaI§ to each. (2) REPETITION NOT ALLOWED 3
Cannot choose same person twice. (3)n=3r=2 3¢, = ' —3

’ (3—=2)!2!

Game: choose two of these three Here: np — n!
students and | will give 10 Riyals to first (1) ORDER MATTERS T (n=17)!
one and 5 Riyals to second one. Cannot (2) REPETITION NOT ALLOWED 30
choose same person twice. B)n=3,r=2 3p, = G- =3=6
Game: choose two of these three Here:
students and | will give 10 Riyals to first (1) ORDER MATTERS N =32 =9

(2) REPETITION ALLOWED

one and 5 Riyals to second one. You are
B)n=3,r=2

allowed to choose the same person twice.

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
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Example Problems
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Questions?? Thoughts??

A

2

-

P -

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
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Random Event = Random Variable

e Let’s talk about the next student who enters the room.

X = number of mobiles he has
* Y = his height
 Z=is he from Jouf region?

 What are the possible values of X, Y, and Z?



Random Event = Random Variable

e Let’s talk about the next student who enters the room.
X =number of mobiles he has
* Y = his height
 Z=is he from Jouf region?
 What are the possible values of X, Y, and Z?
e X=0,1, 2, 3... mobiles. Only fixed values (discrete)

* Y = Height in cm. Any value in a certain range (continuous)
e Z=Yes or No (just description, no numeric values)



Random Event = Random Variable

e All three, X, Y, and Z are random events, but ...
* X is a discrete random variable
* Y is a continuous random variable

e Zis not a random variable! (to qualify for random variable it must have
numeric values)



What is a Random Variable?

* Arandom variable
1. Is avariable whose value depends on the result of a random occurrence
2. Always takes numeric values (NOT descriptions)
3. Can be continuous or discrete
4. Must satisfy some additional conditions (such as P(X = o) = 0 etc.)



Random Event = Random Variable

* We can convert a random event to random variable by assigning
numeric values to descriptive outcomes



Z = Next student who enters the room, is he from Jouf region? - Not a random variable yet.

Possible outcomes
(descriptive)
Possible outcomes
(numeric)

Z =1 if next student entering the room is from Jouf - Now Z is a random variable!!
Z = 0 if next student entering the room in not from Jouf
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Random Event = Random Variable

* We can convert a random event to random variable by assigning
numeric values to descriptive outcomes

e 7 = Next student who enters the room, is he from Jouf region?
* Possible outcomes, Z = Yes or No
e Zis not a random variable as its values are not numeric
* We can convert Z into a random variable by mapping Yes=1, No=0

* Then possible outcomesareZ=1o0r0
* Now Zis a random variable



Collecting Probabilities

* Once again, let’s talk about the next student who enters the room.
e X =number of mobiles he has
* Y = his height
 Xand Y are random variables. We will denote the values they take by small
letters x and vy.

* How do we represent the probabilities of the different values of X and
Y?



We could make a table ...

0 0.1
1 0.6
2 0.2

X = number of mobiles next
student entering the room has

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
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Or, we could draw a graph ...

P(Y =y)

Y = height of the next student
entering the room

y

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University 11



Or, we could write probabilities as a function
(formula) ...

f(Z) = g z=12,..,6 Z = result of rolling a die
.
f(X) s 1 B (u j) X = student height
oV2m 20

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
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Collecting Probabilities

* How do we represent the probabilities of the different values of X and
Y?
* We could write them in a table
 Draw them as a graph
* Or, write them as a mathematical function (formula)



Probability Mass Function (PMF): f(x)

* First we will focus on discrete random variables (e.g. X in previous
slides)

* The formula showing the probabilities of different values of X is called
probability mass function (PMF)

fx) =PX =x)

Probability that X
takes the value x



Three Conditions f(x) Must Satisfy

For a discrete random variable X" with possible values x;, x,, ..., x,, a probability
mass function 1s a function such that

1 Ax)=0
) ; fGx) =1
B) fix)=PX=x)

Assigned probabilities cannot be negative \ _

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
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Let’s play ...

* Let’s assume there is a bag with three balls in it with numbers 1 -3
written on them. You draw one ball at random.

e X = number written on the ball (random variable)
e x=1, 2, 3 (possible values of X)

$f0) =P =)

1

Note that f(x) satisfies the
three conditions 2
1. Its always non-negative ‘
2. Sumsuptol 3
3. It assigns probabilities to

each value of X

1
3
1
3
1
3

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University

16



Cumulative Distribution Function (CDF): F(x)

* Sometimes we like to talk about what range of values a random
variable may take

 What is the probability that the next student entering the room has more
than two mobiles? i.e., P(X >2) =7

 What is the probability that the next student entering the room has two
mobiles or less?, i.e., P(X < 2) =?

* For such cases, the Cumulative Distribution Function (CDF) is useful.



Cumulative Distribution Function (CDF): F(x)

F(x) =P(X < x)

F(x) = inSxf(xi)

Probability that X
takes a value less
than or equal to x

CDF of a discrete
random variable is just
the sum of the PMF
values for x; < x



Cumulative Distribution Function (CDF): F(x)

) o o

0.18 F (x)
0.16 08
014 E
012 ;
:E' 01 _E ﬂlﬁ B
0 o
S 007 E
< a
0.08 ;: 04
0.04 5
o
n.o2 0z k-
0
1 2 3 4 5 B
Scores kI L 5 1 L L 5 1 L L L 1
1 2 3 i 5 6
Dice Side
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Probability

0.18

0.16

0.14

012

=
—

0.0s

0.06

0.04

0.0z

=
-

=
&

(=
i

Crumulative Probability

=
L

P(X < 3) = sum of all these possibilities = % + % + % = 0.5
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Three Conditions F(x) Must Satisfy

For a discrete random variable X, £(x) satisfies the following properties.

(1) Flx)=PX=x)= 3, fx)

2) 0=FHx)=1

CDF of a discrete CDF is always an increasing function
random variable is just

the sum of the PMF
values for x; < x
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Let’s play ...

* Let’s write F (x) for the three balls example

Note that F(x) satisfies the
three conditions

() Fx)=PX=x)= 3, f(x)
2 0=Fx)=1
(3) Ifx=y, then F(x) = F(y)

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University 2



We can use F(x) to find many kinds of
probabilities (ranges and values)

B P(X<a)=Fla)
B P(X=a)=P(X<a)-P (X<a)
=P(X< a)- P(X< a—1)
=1-F(a) — F (a—1)
P(X>a)=1-P(X< a)=1 — F(a)
P(X= a)=1- P(X<a)=1- P(X<a —1)= 1- F(a—1)
P(X<a)=P(X<a —-1)=F (a -1)
P(a <X <b)=F(b) —F(a)
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Test the relations on previous slides on this

example
f(x)

0.1a

=
—_

Probability

0.16
0.14
0.1z
0.0g
0.06
0.04
0.0z
a T T T T T
1 2 3 4 5 B

Scores

Chumulative Probability

1.0

=
&

=
=1

=
.

=
B3

0.0

F(x)

Dice Side
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Joint Probability Distribution (JPD): f(x, y)

 Sometimes we are interested in finding the probability of two things

happening at the same time
* What is the probability that next student entering the room has two mobiles
and no pen?
* X =number of mobiles he has

* Y = number of pens he has
e P(X=2andY=0)="?

* For such cases, we use the Joint Probability Distribution (JPD)



Joint Probability Distribution (JPD): f(x, y)

flx,y) =PX =x,Y =y)

Probability that X takes the value x
and Y takes the value y



Three Conditions f(x,y) Must Satisfy

JPD can never be

negative.

The function f(x.y) is a joint probability distribution or probability mass
function of the discrete random variables X and Y if

-

1. f(x,y) >0 for all (i, y),
2. Y > fle.y) =1,
Ty

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
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Let’s play ...

 Let’s assume there is a bag with three balls in it with numbers 1 -3
written on them. You draw two balls (one by one) at random.
e X = number written on the first ball (random variable)
* Y = number written on the second ball (random variable)
e x=1, 2, 3 (possible values of X)

* y=1, 2, 3 (possible values of Y)
* g(x) =P(X =x) %
* h(y) = P(Y = y) '

* fl,y) =PX =xY =y) -

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
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All the possible outcomes (note that
they are equally likely)

1 2 3

o | |
N |
a2

Note that f(x, y) satisfies the three conditions

1. f(x,y) >0 for all (x,y),
2. 2 ) flwy) =1,
Ty

3. P(X =2.Y =y) = flx,y).
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f(x)

0.3
0.25
0.2
0.15
0.1
(.05

Plot of a single random variable distribution is a two Plot of a joint distribution is a three dimensional curve!
dimensional curve



Probability over an area A

For any region A in the xy plane, P|(X.Y) € Al =>"> f(x,y).
A

X,y 2 3
1
2

3

A={x>1y <3} PI(X,Y) € A] = F(21) + F(22) + fB1) + F(3.,2) = %

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
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Marginal Distribution

* Sometimes we are interested in questions such as “given the joint
distribution of X and Y, find the distribution of X”

* This may be the case, for instance, if we have easy access to the joint
distribution.

* The distribution of X extracted from the joint distribution of X and Y
(by summing over all possible values of Y) is called the Marginal
Distribution of X



Marginal Distribution

Sum f(x,y) over all
the possible values of Y

Marginal Distribution of X — | g(.f') - Z / (J y)

h(y) =) fle,y
Marginal Distribution ofY — ) Z ) & )

Sum f(x,y) over all
the possible values of X

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
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f(,1)  f(1,2)  f(13)

f1 f(22) f(23)
3,2 3,3

»g(1) =f(L,D)+f(1,2) + f(1,3) .
g(x) = marginal
»g(2) = f(2,1) + f(2,2) + f(2,3) distribution of x

" 9(3) = FBD +f(32) + f(33)
i’ o 9
~

>h(1) = f(1L,1) + f(21) + f(2,3)
h(y) = marginal

>h(2) = f(1,2) + f(2,2) + f(3,2) distribution of y
>h(3) = f(1,3) + f(2,3) + f(3,3)

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
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Conditional Distribution (CD): f(x | y)

* Sometimes we are interested in finding the probability of an event
given that another event has taken place.
 What is the probability that a student will get GPA 5 in this semester given

that his CGPA till previous semester is 4.5?

e X = GPA student will get in this semester
* Y =His CGPA now
e P(X=5givenY=4,5)="

* For such cases, we use the Conditional Distribution (CD)



Conditional Distribution (CD): f(x | y)

Let X and Y be two random variables. discrete or continuous. The conditional
distribution of the random variable Y given that X = x is

(2,1 |
flylx) = J J). provided g(x) > 0.
g(x)
Similarly, the conditional distribution of X given that Y = y is
, .1
flxly) = I "/). provided h(y) > 0.
| h(y)

Note:
g(x) = marginal distribution of X
h(y) = marginal distribution of Y

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
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All the possible outcomes (note that
they are equally likely)

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
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Statistical Independence

* Two random variables are statistically independent if knowledge of
one does not change the probability distribution of the other.



How to check statistical independence?

* We can prove that two random variables are statistically independent
by showing any of the following to be true for all values of x and y.

fxly) = g(x)
flx) = h(y)
fx,y) = g(x)h(y) Note.

g(x) = marginal distribution of X
h(y) = marginal distribution of Y




All the possible outcomes (note that
they are equally likely)

1 2 3

o | |
N |
a2

X and Y are not statistically independent, since for many values of x and y

fxy) # g()h(y)

eg, f(21) % g(2h(1)
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Questions?? Thoughts??

A

2

-

P -
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We have previously talked about ...
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Collecting Probabilities

 Next student who enters the room.
e X = number of mobiles he has
* Y = his height

* How do we represent the probabilities of the different values of X
and Y?



We could make a table ...

0 0.1
1 0.6
2 0.2

X = number of mobiles next
student entering the room has
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Or, we could draw a graph ...

P(Y =y)

Y = height of the next student
entering the room

y

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University



Or, we could write probabilities as a function
(formula) ...

f(Z) = g z=12,..,6 Z = result of rolling a die
.
f(X) s 1 B (u j) X = student height
oV2m 20
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Collecting Probabilities

* So, we collect probabilities in terms of a probability mass function
(discrete case) or probability density function (continuous case)

Number of students

O @D EHD O @ O

Student Marks



Collecting Probabilities

Number of students

4030080800180 8000000

Student Marks
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Collecting Probabilities

Number of students

Student Marks
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Collecting Probabilities

Number of students

Student Marks

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University

10



Two Important Measures of a Random
Variable: Mean and Variance

* Next we will talk about two important measures of a random variable

that are often used in analysis and design instead of the full
probability functions.

* These are Mean and Variance

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University 11



Many names: Mean/Average/Expectation

Mean = Center of mass for the distribution (balancing point)
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Many names: Mean/Average/Expectation

Mean = Center of mass for the distribution (balancing point)
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Many names: Mean/Average/Expectation

Mean = Center of mass for the distribution (balancing point)

Number of students
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Many names: Mean/Average/Expectation

Mean = Center of mass for the distribution (balancing point)

Number of students
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Variance = degree of spread (how much
variation is there in the data/outcomes?)

, Medium variance
Low variance

B S S

High variance

@@O@W

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
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How shall we write Mean and Variance
mathematically ?



Mean: Let’s play a game ...

e Suppose | invite you to a game of toss with following rules
* We toss several times (e.g., 100 tosses)
* Every time H appears | give you 10 Riyals
e Every time T appears | take from you 10 Riyals

* How much can you expect to win on average?
* |s there any point in playing this game?



Mean: Let’s play a game ...

Logically

1
P(H) =P(T) = >

1 1 You win O Riyals on average

f(10) = f(=10) = >

Mathematically

E[X] = x1f(x) + x,f(x,) =10 x%+ (—10) ><%= 0

f 5

Graphically

A Mean = where should you place the wedge so that the

10 “scales” are balanced

-10
0
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Mean: Let’s play a game ...

e Suppose now | change the rules slightly
* We toss several times (e.g., 100 tosses)
* Every time H appears | give you 10 Riyals
e Every time T appears | take from you 50 Riyals

* Now how much can you expect to win on average?
e Should you play such a game?



N| =

f(x)

Mean: Let’s play a game ...

P(H) =P(T) = %

1
£(10) = f(=50) =

On average, you stand to
lose 20 Riyals per toss

Logically

You will expect to lose more money

Mathematically

E[X] = x1f(x)) + x,f(x,) =10 x%+ (=50) X%z —20

Graphically

%

0

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
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Mean: Let’s play a game ...

e Suppose we change the game to rolling a die
* We roll several times (e.g., 100 rolls)
* Every time a number above 2 appears | give you 10 Riyals
e Every time a number less or equal to 2 appears | take from you 10 Riyals

* Now how much can you expect to win on average?
e Should you play such a game?



Mean: Let’s play a game ...

r_2 P(X<2)= 2 _1 Logicall
P(X>2)=g=§ =2) =773 y
1 2 1 You expect to win more
f(10) == f(=10) =
3 3
Mathematically
L 2 1
fo
3 Graphically
Mean = where should you place the wedge so that the
-10 * 10 “scales” are balanced
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So,

The mean or expected value of a discrete random variable X,
denoted uy or E(X), is given by

px = ECO) = ) xf(x)

X

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University

24



 Let’s assume there is a bag with three balls in it with numbers 1, 3,
and 5 written on them. You draw one ball at random.

* X = number written on the ball (random variable)
e x=1, 3, 5 (possible values of X)

* flx) = P(X =x)

1 1 1
i = 800 = Y27 = (1) #(33) + (55) =3
1

1
3

5

Wl W= Wi
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 Let’s assume there is a bag with three balls in it with numbers 1, 3,
and 5 written on them. You draw one ball at random.

* X = number written on the ball (random variable)
e x=1, 3, 5 (possible values of X)

* flx) = P(X =x)

“X=E(X)=zxf(x)=(1><%>+(3x%>+(5x%>=3

I+ +

W =

1
3 X —

w
X
Wl =

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University 26



Variance

The variance of a discrete random variable X, denoted o or
V(X), is given by

o7 =V(X) = E(X — piy)?

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
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Several equivalent formulations of variance

0)% = E(X — .UX)Z

oF = ) (= w)*f(x)

ox = E(X?) — ux

of = ) X))~ i

X

EE 302 - Probabilistic Methods in Electrical Engineerin

g / Dr. Naveed R. Butt @ Jouf University
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 Let’s assume there is a bag with three balls in it with numbers 1, 3,
and 5 written on them. You draw one ball at random.

* X = number written on the ball (random variable)
e x=1, 3, 5 (possible values of X)

* flx) = P(X =x)

1

B _ B 1 1 1\
,LlX—E(X)—ZXf(X)—<1X§>+(3X§>+(5X§>—3

1 5 x ‘

3 % o2 =Y x2f(x) — p% = ((1)2>< g) + ((3)2>< §)+((5)2x g) — (3)2 =266
1

5 -
3
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Standard Deviation

The square root of variance is called standard deviation, and denoted by oy

ox =+ V(X)

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University 30



 Let’s assume there is a bag with three balls in it with numbers 1, 3,
and 5 written on them. You draw one ball at random.

* X = number written on the ball (random variable)
e x=1, 3, 5 (possible values of X)

* fx) =P(X =x)

B SR A WA
1 * ‘

3 o} = Tux?f() - = (2% 3) + (@22 )% ) - (3% = 2.66

5

Wl k= W= Wl

oy = V2.66 = 1.63
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What is the mean of a constant (or a non-random variable)?

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
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What is the mean of a constant (or a non-random variable)?

If Cis a constant, then

E(C)=C

A constant takes only one
e.g. E(10) =10 - value, so the “balancing
point” is that value itself

If Z; is a non-random variable, then

E(Zt) = Zt

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University

knowthatZ, =1,2Z, =2, ... (i.e,, 0

O
e.g. if Z, = t, then we already | A

10
the values of Z; are non-random)
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What is the variance of a constant (or a non-random variable)?

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
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What is the variance of a constant (or a non-random variable)?

If Cis a constant, then

V(C) =0

eg. V(10)=0 =

If Z; is a non-random variable, then

V(Z,) =0

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University

e.g. if Z; = t, then we already
knowthatZ, =1,2Z, =2, ... (i.e,,
the values of Z; are non-random),
and so we know that V(Z;) =
V(1) =0,V({Z,) =V(2)=0,..

A constant takes only one
value, so there is no “spread”

A
° 10

35



Some important properties of the mean

If Xis a random variable and a and b are constants, then

E(aX+b)=aE(X)+b

For any two random variables X and Y, we have

EX+Y)=EX)+E(Y)
E(X-Y)=E(X) - E(Y)

For two independent random variables X and Y, we have

E(XY) = E(X)E(Y)

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
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Some important properties of the mean

If X is a random variable and v(X) is some function of X, then

E@(0) = ) v(0f (x)

X

For example, if v(X) = X3, then

E(0) = E(X%) = ) x*f ()

X

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
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Some important properties of variance

If X and Y are any two random variables and a, b are constants, then

V(aX + bY) = a?V(X) + b2V (Y) + 2abE((X — ux)(Y — uy))

If X and Y are two independent random variables and a, b are constants, then

V(aX + bY) = a’V(X) + b?V(Y)
V(aX — bY) = a?V(X) + b2V (Y)

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
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Example 1

Consider two zero-mean unit variance random variables X, Y. Define a new random variable W = 2X+Y.
Given that X and Y are independent, find mean and variance of W.

We are given that

px = py =0
oz =o0f =1
And
X,Y are independent
Therefore

wy =EW)=EQX+Y)=2EX)+E() =0
VW) =VRX+Y)=4VX)+V(Y) =4+1=5



Example 2

Consider two zero-mean unit variance random variables X, Z. Define a new random variable W = 2X+Z.

Given that E(XZ) = 1, find mean and variance of W.

We are given that

ux =pz =0
o =07 =1
Therefore
Uy =EW)=EQRX+Z)=2EX)+E(Z)=0

VW) =V(RX+2) =4VX) + V(Z) + 2Q)E(X—u)(Z—pz)) =4+ 14+4(1+04+0+0) =9

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
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Questions?? Thoughts??

A

2

-

P -

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
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We have previously talked about ...
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Probability Mass Function (PMF): f(x)

f(x) — P(X — x) Probability'Fhatthe discrete

random variable X takes the value x

For a discrete random variable X with possible values x,, x,, ...
mass function 1s a function such that

() fix)=0
2 > flx)=1
i=1
3) flx) = PX = x)

a probability

H’

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University



What are some of the common distribution
functions for discrete random variables?

* Next, we will look at some probability distributions (f (x)), that are
often used in practice for discrete random variables

* These include
e Uniform Distribution
* Binomial Distribution
e Geometric Distribution Based on Bernoulli Trials
* Negative Binomial Distribution
* Poisson Distribution



Discrete Uniform Distribution = when all
possible outcomes have equal probabilities

e X =result of a rolling a die
ex=1,2,3,4,5, 6 (possible values of X)

0.18

» All outcomes have equal probability
1 0.14 +
-, X = 1,2,3,4‘,5,6 0.12 |

* f(x) =146 2,

ah

0, otherwise

S 0.08 4

P

0.06

0.04

0.02 A




Discrete Uniform Distribution = when all
possible outcomes have equal probabilities

A random variable X has a discrete uniform distribution if it has a finite

set of outcomes (say x4, X5, X3, ..., X,), and each outcome has exactly
the same probability. The distribution of X with n equally probably
outcomes may then be written as

(1
f(x) — E, X = xl,xZ,X3, ...,xn
0

0, otherwise
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Discrete Uniform Distribution = when all
possible outcomes have equal probabilities

Mean and Variance of a uniformly distributed random variable X

el

EIX] =y = ) xf(x) =%ix

X =1

X =X1,X2,X3, ..., X

03|r—\

otherwise

n

VIX = Y G i) = Y (= )?

X i=1
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Discrete Uniform Distribution

Special case: when x; are integers in range [a b]

Suppose X 1s a discrete uniform random variable on the consecutive integers
a,a+ 1,a+ 2. ...,b tora = b. The mean of X 1s

b+ a
2

p = EX) =

The variance of X 1s
(b—a+ 1y —-1

12

2 —
g =

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University



Example

0.1a

x=1,2,3,4,56 e

If f&x) =

S AN -

, otherwise 0.14
012
0.1

then
0.08
0.0R

a=1, b=6 0.04

0.0z

= 2.92
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What are some of the common distribution
functions for discrete random variables?

* Next, we will look at some probability distributions (f (x)), that are
often used in practice for discrete random variables

* These include
e Uniform Distribution
* Binomial Distribution
e Geometric Distribution Based on Bernoulli Trials

* Negative Binomial Distribution
* Poisson Distribution



EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University

LLL

LLR
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RLR
RRL
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LLL

LLR
LRL
LRR
RLL
Note that: RLR
- Same experiment is repeated several times RRL
- Each time there are only two possible outcomes
(LorR)
- Each time the probabilities of the two outcomes RRR

are the same (P(L) = p, P(R)= q)
- All the repetitions are independent of each other

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University 12



Bernoulli Process & Bernoulli Trials

* An experiment that satisfies the conditions we saw in the previous
example is called a Bernoulli Process, and each repetition is called a

Bernoulli Trial.

In summary, a Bernoulli Process is a random process
that satisfies the following conditions

1. It consists of several repetitions

Each repetition is independent of the other

3. Each repetition has only two possible outcomes (usually called
“success” and “failure”)

4. The probability of “success” is the same during each repetition
(common notation p = P("success"),q = P("failure"))

s



Some Questions we could ask

* What is the probability that in the n repetitions you take exactly x left
turns?

* What is the probability that the first left turn you take is at repetition
number x?

 What is the probability that it takes you x repetitions to take exactly r
left turns?

Each of these leads to a different random variable
X, with its own probability mass function f (x)



What is the probability that you take three left turns?

Probability (first left and second left and third left) = ? LLL
Let t; = first turn, t, = second turn, t; = third turn
LLR
Th
e LRL
= P(t; = L)P(t; = L)P(t3 = L) LRR
3 RLL
=pXpXp=p
RLR
RRL
Recall that for independent events A, B, and C
we have P(AN BN C) = P(A)P(B)P(C)
q R RRR

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University 15



What is the probability that you take exactly two left turns?

LLL
+P(ty =RNnt,=LNty;=1L)
LLR
=ppq +pqp + qpp = 3p°q LRL
LRR
RLL
RLR
RRL
Next, We will use this understanding to
answer several such questions, and
develop various probability distributions q R RRR

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University 16



What are some of the common distribution
functions for discrete random variables?

* Next, we will look at some probability distributions (f (x)), that are
often used in practice for discrete random variables

* These include
e Uniform Distribution
e Binomial Distribution
e Geometric Distribution Based on Bernoulli Trials
* Negative Binomial Distribution
* Poisson Distribution



Binomial Distribution

Consider an experiment consisting of n Bernoulli trials (i.e., independent trials
with constant probability of “success” denoted p)

Let X = number of successes in n Bernoulli trials

Then the probability distribution of X is given by
I

) =(")pa-pr* x=01,...n

X

And we say that X has a Binomial Distribution

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University

Defining the setup
(experiment)

Defining the random
variable

Finding formula for
distribution of x

Naming the
distribution
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Geometric Distribution

Consider an experiment consisting of Bernoulli trials (i.e., independent trials with
constant probability of “success” denoted p)

Let X = number of trials till first success
Then the probability distribution of X is given by

f)=1-p)'p x=12..

And we say that X has a Geometric Distribution

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University

Defining the setup
(experiment)

Defining the random
variable

Finding formula for
distribution of x

Naming the
distribution
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Negative Binomial Distribution

Consider an experiment consisting of Bernoulli trials (i.e., independent trials with
constant probability of “success” denoted p)

Let X = number of trials till r successes

Then the probability distribution of X is given by

x—1 o
f(\) : \ l (l - [7)"_',17' x=prr+l.r-+t2,...
p—

And we say that X has a Negative Binomial Distribution

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University

Defining the setup
(experiment)

Defining the random
variable

Finding formula for
distribution of x

Naming the
distribution
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Recall ...

Recall5!=5x4x3x2x1
AndO! =1

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
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Interpretations ...

. Total number of trials =n
X successes Failures=n — x

AU

‘f.(.l’) — . pl(l . p)n—x X = 0.& lj e 7 Binomial Distribution

P(success) =p P(failure) =1—1p

Number of ways we can have x
successes in n trials knowing
that the order does not matter

X = number of successes in n trials

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University 22



What is the probability of two success in three trials?

PSENSNF)+P(SNFNS)+P(FNSNS)

-
=pp(1—p) +p(1 —p)p+ (1 —p)pp =3p*(1 —p) S
P
S S
P
Using the Binomial Distribution formula 1-p F
withn = 3,x = 2 we get the same result p S

P \

X

3\ 3t , hF
f(2)=(2>p (1—p)=(3_2)!2!p (1-p)=3p°(1—-p)

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
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Interpretations ...

P(failure) =1—p

\

=0 -py s x

P(success) =p

=1, 2,...

There has to be at least one trial for
one success to occur (so no x = 0)

Geometric Distribution

There are a total of x — 1 failures
Success occurs in trial number x but before the first success occurs
not before

X = number of trials till first success

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University 24



What is the probability of that first success occurs in third trial?
P(FNFNS)
=1 -p)(A-pp=>10-p)°p —

Using the Geometric Distribution formula
with x = 3 we get the same result

: X— 1-p g 1_\F
‘]‘(I) — (1 L P) lp F/ :

f3)=QQ-p)p

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
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Interpretations

There have to be at least r trials

for r successes to occur
x — 1 failures T successes

s

Negative Binomial

/ I + I I + iy wwn Distribution

P(failure)=1—p  P(success) =p

By definition, we know that the last trial is a
success, thus we only have to see in how many
ways can we have remaining r — 1 successes in
the remaining x — 1 trials, knowing that order
does not matter in these x — 1 trials.

X = number of trials till r successes

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University 26



What is the probability that it takes three trials (not more or less) to get first two successes?

PSNFNS)+P(FNSNS)

-
=p(1-pp+ @A —p)pp =2p*(1—p) S
p
S S
p
Using the Negative Binomial Distribution 1- F
p

formula with x = 3,r = 2 we get the
same result P 5

. x —1 o 1-p / h F
flx) = ( )(I -p)p F

r— |

\
3-1 2! 1p F
=2p*(1-p)

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
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Summary of Properties (Range, Mean, Variance)

Binomial Distribution

fx) = (n) p(1 —p)"™

X

x=0,1,...,n

Geometric Distribution

fx) = (1 =p)'p

vy = 1, 2,
1
ux = E[X] ==
X p
1-p
o2 =V[X] = 72

Negative Binomial Distribution

flx) = (’:: 11 )(1 -

r=rrt+tlirt2. ..

1_
y = []=r(pp)

r(1—p)
0% = V[X] = 2

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
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What are some of the common distribution
functions for discrete random variables?

e Uniform Distribution

* Binomial Distribution

e Geometric Distribution Based on Bernoulli Trials
* Negative Binomial Distribution

* Poisson Distribution



What are some of the common distribution
functions for discrete random variables?

e Uniform Distribution

* Binomial Distribution

e Geometric Distribution Based on Bernoulli Trials
* Negative Binomial Distribution

* Poisson Distribution

Based on a special “counting”
process called Poisson Process



A Counting Process

* We often need to count random events, e.g.,
 How many customers visit a shop in a given time duration
 How many of my students fall asleep during my lecture
* How many people visit a given website in a given time duration
* How many calls you get during the lecture
* How many drops of rain fall in a given area



A Counting Process

* Let X be the number of some specific random events that occur in
duration, say t ( t can be any unit of time, length, area, volume etc.)

e E.g., ift = 2 hours, then X = {number of calls you get in two hours}

* Assume that the counting begins with zero, i.e., X =0fort =0

8am 9am 10am 1lam

X = # of calls in one hour X =# of calls in two hours

X = # of calls in three hours



Polisson Process

* Let X be the number of some specific random events that occur in a
duration, say t

* We say that X is a Poisson Random Variable if it satisfies the
conditions of a Poisson Process, which are as follows
* The number of events in two non-overlapping intervals are independent

* The number of events during an interval depend only on the length of the
interval

* The probability of two events occurring at exactly the same time is zero

* The average number of events per unit interval (time, distance etc.) is
constant (usually denoted by A)

* Thus average number of events in interval t is At



Poisson Distribution

The probability distribution of the Poisson random variable X . representing
the number of outcomes occurring in a given time interval or specified region

denoted by t. 1s

AL &
ol At) = M) g = e

!

where A 1s the average number of outcomes per unit time. distance. area, or
volume and e = 2.71828. ...

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
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Examples
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Questions?? Thoughts??

A

2

-

P -
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Continuous Random Variables and Probability

Distributions

3-1 CONTINUOUS RANDOM VARIABLES

A continuous random variable has an infinite number of possible values & the
probability of any one particular value is zero. A continuous random variable is a
random variable that can assume any value in some interval of numbers, and are thus
NOT countable.
Examples:

v’ The time that a train arrives at a specified stop

v’ The lifetime of a transistor

v A randomly selected number between 0 and 1

v" Let R be a future value of a weekly ratio of closing prices for IBM stock

v Let W be the exact weight of a randomly selected student

3-2 PROBABILITY DISTRIBUTIONS AND PROBABILITY DENSITY
FUNCTIONS
A random variable is said to be continuous if there is a function f (X) with the
following properties:

a) Domain: all real numbers

b) Range: f (x)>0

c) The area under the entire curve is 1
Such a function f (X) is called the probability density function (abbreviated p.d.f.)
The fact that the total area under the curve f (x) is 1 for all X values of the random
variable tells us that all probabilities are expressed in terms of the area under the curve
of this function.

The function f(x) is a probability density function (pdf) for the continuous
random variable X, defined over the set of real numbers, if

1. f(x) >0, for all = € R.
2. ffooo flx) de=1.

3. Pla<X <b)= [’ f(x) de.

The important point is that £(x) is used to calculate an area that represents the probabil-
ity that X'assumes a value in [a, b]. For the current measurement example, the probability that

If Xis a continuous random variable, for any x; and x;,

An=X=x)=HAxn<X=x)=HAxn=X<x)=HAx <X<x) 42)

Page 1 of 5 Continuous Random Variables and Probability Distributions



3-3 CUMULATIVE DISTRIBUTION FUNCTIONS

The cumulative distribution function F(r) of a continuous random variable
X with density function f(x) is

F(r)=P(X <ux)= /_I f(t) dt, for —oo < ux < oo.

B 0<F(x)<l1,for all x
Notice that in the definition of /{x), any < can be changed to = and vice versa. That 1s,
F(x) can be defined as either 0.05x or 0 at the end-point x = 0, and F(x) can be defined as
either 0.05x or 1 at the end-point x = 20. In other words, /(x) is a continuous function. For a
discrete random variable, F(x) is not a continuous function. Sometimes, a continuous random
variable is defined as one that has a continuous cumulative distribution function.
The probability density function of a continuous random variable can be determined from

the cumulative distribution function by differentiating. Recall that the fundamental theorem of
calculus states that

X

| oy au = 1

— o0

As an immediate consequence of Definition 3.7, one can write the two results

Pla< X <b) = F(b) — P(a) and f(x) = L&)

if the derivative exists.
3-4 MEAN AND VARIANCE OF A CONTINUOUS RANDOM VARIABLE

Let X be a random variable with probability distribution f(2). The mean, or
expected value, of X is

dx

pn=FEX)= Za:f(a:)

&r

if X is discrete, and

n=FEX)= /;OO xf(x) dx

if X is continuous.

Let X be a random variable with probability distribution f(x) and mean p. The
variance of X is

o? = E[(X — )’ =) (¢ —p)’f(x),  if X is discrete, and
o = E[(X —p)? = / (x — p)?f(x) de, if X is continuous.

oo

The positive square root of the variance, o, is called the standard deviation of
X.
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The variance of a random variable X is

0’ = B(X?) — 1~

3.5 TWO OR MORE RANDOM VARIABLES
Joint Probability Distributions

The function f(x,y) is a joint density function of the continuous random
ariables X and Y if

1. fle,y) >0, for all (x,y),
2 [ flesy) de dy =1,

3. P(X,Y) = [ [, f(x,y) dr dy, for any region A in the xy plane.

Given the joint probability distribution f(x,y) of the discrete random variables
X and Y, the probability distribution g(x) of X alone is obtained by summing
f(x,y) over the values of Y. Similarly, the probability distribution h(y) of Y alone
is obtained by summing f(x,y) over the values of X. We define g(x) and h(y) to
be the marginal distributions of X and Y, respectively. When X and Y are
continuous random variables, summations are replaced by integrals. We can now
make the following general definition.

The marginal distributions of X alone and of Y alone are
gle)=>_ flr.y) and h(y) = f(r.y)
Yy T

for the discrete case, and

:/_ flr,y) dy and h(y):/; flz,y) dx

for the continuous case.

If we write the marginal fx(x) in terms of the joint density, then this becomes

E[X] = //le}/lz)dldl
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Let X and Y be two random variables, discrete or continuous. The conditional
distribution of the random variable ¥ given that X = x is

f(@,y)
g(x)

Similarly. the conditional distribution of X given that ¥ =y is

flay)
h(y)

Jyle) = , provided g(x) > 0.

, provided h(y) > 0.

flzly) =

b
Pla<X <b|Y =y) :/ fla|y) de.

Definition 4. Let X.Y be random variables (discrete or continuous).
joint (cumulative) distribution function is

Fxy(z,y)=P(X <z,Y <y)
If X and Y are jointly continuous then we can compute the joint cdf from

their joint pdf:
- y
Fyy(x,y) = / [ / flu,v) dv] du

If we know the joint cdf, then we can compute the joint pdf by taking partial
derivatives of the above :
82
dxdu

Fxy(2,y) = f(z.y)

Statistical Independence
It should make sense to the reader that if f(x|y) does not depend on y, then of
course the outcome of the random variable ¥ has no impact on the outcome of the
random variable X . In other words, we say that X and Y are independent random
variables. We now offer the following formal definition of statistical independence.

Let X and Y be two random variables, discrete or continuous. with joint proba-
bility distribution f(x,y) and marginal distributions g(x) and h(y), respectively.
The random variables X and Y are said to be statistically independent if and
only if

flr,y) = g(x)h(y)

for all («,y) within their range.
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Let X and Y be random variables with joint probability distribution f(x, y). The
covariance of X and Y is

oxy = E[(X = px)(Y =)l = 3 > (o = px)(y = ) f )
r oy
if X and Y are discrete. and

oxy = E[(X —px)(Y — piy)] = foo /OO (v — px)(y — py) f (. y) dix dy

— 0o — oo

it X and Y are continuous.

The covariance of two random variables X and Y with means py and p.-. respec-
tively, is given by

oxy = E(XY) — pixpiy.

R = / | / zy fx(x) fy(y) dedy

Theorem 2. If X and Y are independent and jointly continuous, then

E[XY] = E[X]E[Y]
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Continuous Random Variables and Probability

Distributions

3-6 CONTINUOUS UNIFORM DISTRIBUTION

One of the simplest continuous distributions in all of statistics is the continuous
uniform distribution. This distribution is characterized by a density function
that is “flat.” and thus the probability is uniform in a closed interval, say [A. B].
Although applications of the continuous uniform distribution are not as abundant
as those for other distributions discussed in this chapter, it is appropriate for the
novice to begin this introduction to continuous distributions with the uniform
distribution.

[niform  The density function of the continuous uniform random variable X on the in-
Distribution  terval [4, B] is

l /
., A<z <B,
flz;A,B)={ B-4 <<
\ ‘ 0, elsewhere.

The density function forms a rectangle with base B— A and constant height ﬁ.

As a result, the uniform distribution is often called the rectangular distribution.
Note, however, that the interval may not always be closed: [A, B|. It can be (A, B)
as well. The density function for a uniform random variable on the interval [1, 3]
is shown in Figure 6.1.

if a<x<b fx)

f(x)=

—

o~
|
=]

b
b-a
0

otherwise

f(x)=
a b x

Figure 4-8 Continuous uniform
probability density function.

The mean and variance of the uniform distribution are

A+B (B—A)?
| = —— adalld 0° = ——.
H 2 12
Proof
b
[ x 052 |2 (a+ b)
E(X)_Jb—adx_b—aa 2

The variance of Xis

nx) =

(03 625 o

bh— a 3(b—a) la 12
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The cumulative distribution function of a continuous uniform random variable is ob-
tained by integration. If a < x < b,

Hx) = Jl/(b —a)du=x/(b— a)— a/(b— a)

Therefore, the complete description of the cumulative distribution function of a continuous
uniform random variable 1s

0 x<<a
Hxy=qx—a/(b—a) a=x<D
1 b=x

3-7 NORMAL DISTRIBUTION

Undoubtedly, the most widely used model for the distribution of a random variable 1s a
normal distribution. Whenever a random experiment is replicated, the random variable that
equals the average (or total) result over the replicates tends to have a normal distribution as
the number of replicates becomes large. De Moivre presented this fundamental result, known
as the central limit theorem, in 1733. Unfortunately, his work was lost for some time, and
Gauss independently developed a normal distribution nearly 100 years later. Although De
Moivre was later credited with the derivation, a normal distribution 1s also referred to as a

Gaussian distribution.
The theoretical basis of a normal distribution is mentioned to justify the somewhat com-

plex form of the probability density function. Our objective now is to calculate probabilities
tor a normal random variable. The central limit theorem will be stated more carefully later.

Random variables with different means and variances can be modeled by normal proba-
bility density functions with appropriate choices of the center and width of the curve. The
value of £{X) = p determines the center of the probability density function and the value of
NX) = o? determines the width. Figure 4-10 illustrates several normal probability density
functions with selected values of . and o*. Each has the characteristic symmetric bell-shaped
curve, but the centers and dispersions differ. The following definition provides the formula for
normal probability density functions.

fx) c2=1

c2=1

c2=4

,(1,:5 ,u,:15 X

Figure 4-10 Normal probability density functions for
selected values of the parameters p. and o~.
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Normal

Distribution A random variable X with probability density function
1 —(x—ny
W)=z e 20° —o0 < x < o (4-8)

1s a normal random variable with parameters ., where —o < pu < %, and o > 0.
Also,

HX)=p and V(X)=o" (4-9)

and the notation M, o) is used to denote the distribution.

Proof: To evaluate the mean. we first calculate

0o L o2
EX —p) = I3 (55) da

oo V2TO

Setting z = (¢ — pu)/o and dr = o dz, we obtain

E(X —p) = \/%f sem82 0 = 0,

since the integrand above is an odd function of z. Using Theorem 4.5 on page 128,
we conclude that

E(X) =p.
The variance of the normal distribution is given by
1 = 1 2
E[(X — p)? :7/ z — p)2em3lE—m/ gy
[(X — )] - _m(:E ny

Again setting z = (¢ — u)/o and dr = o dz, we obtain

2 oo
o =2
E[(X —u)? = f 22e” 7 dz.
21 J s
. : 2
Integrating by parts with u = z and dv = ze™% /2 dz so that du = dz and v =

—e~%°/2 we find that

2 50 o
E[(X —p)?] = \(/Tg (—ze22/2 - +/ &1 d,:) = o204+ 1) = o2

.

Some useful results concerning a normal distribution are summarized below and in
Fig. 4-12. For any normal random variable,

Ap —o<X<p+o)= 06827
Ap — 20 < X< p+ 20)=0.9545
Ap — 30 < X< p+ 30)=09973

Also, from the symmetry of f{x), AX> p) = AX < ) = 0.5. Because £x) is positive for
all x, this model assigns some probability to each interval of the real line. However, the
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f(x)

flx)
pn—30c u-2¢ p-o n pt+o p+ 20 p+ 30
‘ |— 68% —>| ‘
‘ 95% |
10 13 x | 99.7% |
Figure 4-11 Probability that X > ES for a normal Figure 4-12  Probabilities associated with a normal
random variable with p. = 10 and o* = 4. distribution.

The Gaussian random variable is described in terms of two parameters m € R and
o > 0 by the PDF

1 x—m 2
pe) = We_(z°2) (2.3-8)
o

We usually use the shorthand form A/ (m, o) to denote the PDF of Gaussian random

variables and write X ~ N (m, o2). For this random variable
E[X]=m

) (2.3-9)

VAR [X] =0

A Gaussian random variable with m = 0 and o = 1 is called a standard normal. A
function closely related to the Gaussian random variable is the Q function defined as

O(x)=P[N(O,1) > x] =-\/% /00 e_% dt (2.3-10)

(@)
FIGURE 2.3-1
PDF and CDF of a Gaussian random variable.
— i -x2/2
Di(x)=—F——c¢
= o
0.399 —>
Area Q(y)
;
A L i il
-4 =3 =2 —i I y2 3 4 x—>
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Lo Fi(x)
_—ﬁ__'—_____:::: - |
0977 0.977 /
. _4—-— 0.841 0.841 r
0~6_ 0.6
0.4 0.4‘%
0.2 {0
0158 //-—¥~-0.158
1 L 0023 —pe | W | ! B ] 1
-4 -3 =2 —1 0 I 2 3 4 y—> —4 -3 —2 -1 I 2 3 4 x—
(b) (c)

The CDF of a Gaussian random variable is given by

* 1 _=m?
F(x):/ e 22 dt

—00 A/ 2102
o0 ]_ _ (I—m)2
=1—- —2—26 202t
X o
o 1 P (2.3-11)
=1- / e 7du
m /27
X —m
=1-0
where we have introduced the change of variable u = (¢ — m)/o. The PDF and the
CDF of a Gaussian random variable are shown in Figure 2.3-1.
In general if X ~ N (m, 02), then
oa—m
P[X>al=0 ( > )
(2.3-12)
m—ao
P X<al=0Q ( )
o
Following are some of the important properties of the Q function:
1
00) = 2 Q(c0) =0 (2.3-13)
Q(—00) =1 Q(—x)=1-0(x) (2.3-14)
1 2
Q(x) ~ Tz (2.3-16)

e
x+/2m

The distribution of a normal random variable with mean 0 and variance 1 is called
a standard normal distribution.

Creating a new random variable by this transformation is referred to as standardizing.
The random variable 7 represents the distance of X from its mean in terms of standard
deviations. It 1s the key step to calculating a probability for an arbitrary normal random
variable.
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Standardizing
to Calculate

Suppose Xis a normal random variable with mean p and variance 0. Then,
a Probability

a a

P(ng)zp(X_”EX_“)=17(25z) @11)

where Zis a standard normal random variable, and z = p is the zvalue

obtained by standardizing X The probability is obtained by using Appendix Table III
with z= (x — n)/o.

3-8 EXPONENTIAL DISTRIBUTION

Exponential
Distribution The random variable X'that equals the distance between successive events of a Poisson
process with mean number of events A > 0 per unit interval is an exponential
random variable with parameter A. The probability density function of X'is
fix)=Ae ™ for 0=x<w (4-14)
Mean and
Variance

If the random variable X'has an exponential distribution with parameter A,

1 1
w=EX) =, ad o= WX =5 (4-15)

3.9 The Central Limit Theorem

What it the central limit theorem? The theorem says that under rather gen-
eral circumstances, if you sum independent random variables and normalize
them accordingly, then at the limit (when you sum lots of them) you'll get a
normal distribution.
For reference, here is the density of the normal distribution N (s, o2) with
mean j and variance o2
1 _(@=n)?
¢ 27
V2mo?
We now state a very weak form of the central limit theorem. Suppose that

X, are independent, identically distributed random variables with zero mean
and variance o*. Then

Xl R Xn
NG
As the sample size n increases, the distribution of the sample mean p of a random

sample from a population (not necessarily normal) with mean p and variance c°
approaches normal with mean p and variance 6?/n.

N(0, o).
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Central Limit Theorem: Suppose Xq,...,X, are
i.i.d. with E[X;] = p and Var(X,) = ¢2. Then as

n — 00,

Y X —np _ X — D
o\/n o/\/n
where“ 2 " means that the c.d.f. — the Nor(0,1)

c.d.f.
Remarks: (1) So if n is large, then X ~ Nor(u,o2/n).

Nor(0, 1),

(2) The X;'s don't have to be normal for the CLT to

work!

(3) You usually need n > 30 observations for the ap-
proximation to work well. (Need fewer observations if

the X;'s come from a symmetric distribution.)

(4) You can almost always use the CLT if the obser-

vations are i.i.d.

The normal approximation for X will generally be good if n > 30, provided
the population distribution is not terribly skewed. It n < 30, the approximation is
good only if the population is not too different from a normal distribution and, as
stated above, if the population is known to be normal, the sampling distribution
of X will follow a normal distribution exactly, no matter how small the size of the
samples.

The sample size n = 30 i1s a guideline to use for the Central Limit Theorem.
However, as the statement of the theorem implies, the presumption of normality
on the distribution of X becomes more accurate as n grows larger. In fact, Figure
8.1 illustrates how the theorem works. It shows how the distribution of X becomes
closer to normal as n grows larger, beginning with the clearly nonsymmetric dis-
tribution of an individual observation (n = 1). It also illustrates that the mean of
X remains p for any sample size and the variance of X gets smaller as n increases.
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n =1 (population)
e

Figure 8.1: Tllustration of the Central Limit Theorem (distribution of X for n = 1,
moderate n, and large n).
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E&CE 411, Spring 2009, Table of QQ Function

Table 1: Values of Q(z) for 0 <z <9

z Q(z) x Q(z) z Q(x) z Q(z)

0.00 0.5 2.30 0.010724 455 2.6823x107° || 6.80 5.231x1012
0.05 0.48006 || 2.35  0.0093867 || 4.60 2.1125x107% | 6.85 3.6925x10 12
0.10 0.46017 || 2.40  0.0081975 || 4.65 1.6597x107% || 6.90 2.6001x10~12
0.15 0.44038 || 2.45  0.0071428 || 4.70 1.3008x107% | 6.95 1.8264x1012
0.20 0.42074 | 2.50  0.0062097 || 4.75 1.0171x107% | 7.00 1.2798x1012
0.25 0.40129 || 2.55  0.0053861 || 4.80 7.9333x10~7 | 7.05 8.9459x10~13
0.30 0.38209 || 2.60  0.0046612 || 4.85 6.1731x10~7 || 7.10 6.2378x10713
0.35 0.36317 || 2.65  0.0040246 || 4.90 4.7918x10~7 || 7.15 4.3389x1013
0.40 0.34458 || 2.70  0.003467 4.95 3.7107x1077 || 7.20 3.0106x10~'3
0.45 0.32636 || 2.75  0.0029798 || 5.00 2.8665x10~7 || 7.25 2.0839x1013
0.50 0.30854 | 2.80  0.0025551 || 5.05 2.2091x10~7 | 7.30 1.4388x1013
0.55 0.29116 || 2.85  0.002186 5.10 1.6983x10~7 | 7.35 9.9103x10~
0.60 0.27425 | 2.90  0.0018658 || 5.15 1.3024x10~7 | 7.40 6.8092x10~14
0.65 0.25785 || 2.95  0.0015889 || 5.20 9.9644x107% || 7.45 4.667x10~
0.70  0.24196 || 3.00  0.0013499 || 5.25 7.605x10~% || 7.50 3.1909x10~14
0.75 0.22663 || 3.05  0.0011442 || 5.30 5.7901x107% || 7.55 2.1763x10~14
0.80 0.21186 || 3.10  0.0009676 || 5.35 4.3977x10~% || 7.60 1.4807x10~14
0.85 0.19766 | 3.15 0.00081635 || 5.40 3.332x10~% | 7.65 1.0049x10~4
0.90 0.18406 || 3.20  0.00068714 || 5.45 2.5185x10~% || 7.70 6.8033x10~1°
0.95 0.17106 || 3.25 0.00057703 || 5.50  1.899x1078 | 7.75 4.5946x101°
1.00  0.15866 | 3.30 0.00048342 || 5.55 1.4283x10~% || 7.80 3.0954x10~15
1.05 0.14686 | 3.35 0.00040406 || 5.60 1.0718x107% || 7.85 2.0802x10~15
1.10  0.13567 | 3.40 0.00033693 || 5.65 8.0224x107? || 7.90 1.3945x10~15
1.15  0.12507 | 3.45 0.00028029 | 5.70 5.9904x10~? | 7.95 9.3256x10716
1.20 0.11507 || 3.50 0.00023263 | 5.75 4.4622x1079 || 8.00 6.221x1071'6
1.25 0.10565 | 3.55 0.00019262 | 5.80 3.3157x107? | 8.05 4.1397x10716
1.30  0.0968 | 3.60 0.00015911 || 5.85 2.4579x107? || 8.10 2.748x10~16
1.35 0.088508 | 3.65 0.00013112 | 5.90 1.8175x10~2 | 8.15 1.8196x10~16
1.40 0.080757 || 3.70  0.0001078 || 5.95 1.3407x1079 || 8.20 1.2019x10~16
1.45 0.073529 || 3.75 8.8417x107° || 6.00 9.8659x10~1Y || 8.25 7.9197x10~7
1.50 0.066807 || 3.80 7.2348x107° || 6.05 7.2423x10710 || 8.30 5.2056x10~17
1.55 0.060571 || 3.85 5.9059x107° || 6.10 5.3034x10710 || 8.35 3.4131x10~'7
1.60  0.054799 || 3.90 4.8096x107° || 6.15 3.8741x10710 || 8.40 2.2324x10~'7
1.65 0.049471 || 3.95 3.9076x107° || 6.20 2.8232x10710 || 8.45 1.4565x10~17
1.70  0.044565 || 4.00 3.1671x107° || 6.25 2.0523x1071° || 8.50 9.4795x10~ '8
1.75 0.040059 || 4.05 2.5609x107° | 6.30 1.4882x10~10 || 8.55 6.1544x10~ 18
1.80  0.03593 | 4.10 2.0658x107° || 6.35 1.0766x10710 | 8.60 3.9858x10~ 1%
1.85 0.032157 || 4.15 1.6624x107° || 6.40 7.7688x10" 1 || 8.65 2.575x1018
1.90 0.028717 || 4.20 1.3346x107° || 6.45 5.5925x10~11 || 8.70 1.6594x10~18
1.95 0.025588 || 4.25 1.0689%107° || 6.50 4.016x10~ || 8.75 1.0668x10~!8
2.00 0.02275 || 4.30 8.5399x1076 || 6.55 2.8769x107!! || 8.80 6.8408x10~1
2.05 0.020182 || 4.35 6.8069x107% || 6.60 2.0558x10~'! || 8.85 4.376x1071?
2.10 0.017864 || 4.40 5.4125x1076 || 6.65 1.4655x10~!! || 8.90 2.7923x10~1
2.15 0.015778 || 4.45 4.2935%x107% || 6.70 1.0421x107'! | 8.95 1.7774x10~ %
2.20 0.013903 || 4.50 3.3977x1076 || 6.75 7.3923x10712 | 9.00 1.1286x10~'
2.25 0.012224




EE 302
Probabilistic Methods in
Electrical Engineering

with
Dr. Naveed R. Butt
@

Jouf University



The Random and the Fixed

* Probability is a lack of knowledge.

 Randomly varying or uncertain events may still have some underlying
characteristics that are “fixed”

e Some of these can be

If this does not change over time then the
random process is strictly stationary

Probability distribution )

¥

Mean. Variance. Covariance - If these do not “vary” over time then the
’ ’ random process is weakly stationary
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What is a random process?

* Arandom process is a series of random events

e Can be discrete (student heights) or continuous (voice) or discretized
(digitized voice)

X Height of next student

who enters the room
Random

Event/Variable

Heights of next eight
students who enter the room

[X, X, X3 X, Xe X X; Xg]

Random Process
(discrete)
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But first ...

* Let us be clear about what we mean by a random “process”

* A random process is a series of random events

e Can be discrete (student heights) or continuous (voice) or discretized
(discretized voice)

X(t) Human speech

Random Process
(continuous)

[X(t) X(t,) X(t3) X(t,) X(ts) X(tg) X(t,) X(tg)] ~ Somplestakenat

timestl, t2, ..., t8.
Random Process
(discrete) EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University



Our friends in an uncertain world!

 Random or uncertain events may still have some underlying
characteristics that are “fixed”

e Some of these can be

Probability distribution

¥

Mean, Variance, Covariance



Our friends in an uncertain world!

 Random or uncertain events may still have some underlying
characteristics that are “fixed”

e Some of these can be

If this does not change over time then the

Probability distribution : random process is strictly stationary
Mean. Variance. Covariance - If these do not “vary” over time then the
) )

random process is weakly stationary
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Revision - Distribution?

» A distribution is a collection of probabilities we assign to random

events.

e Collection? Graph, table, function )
1/6

Probability

1 2 3 4 ) b

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University



Our friends in an uncertain world!

 Random or uncertain events may still have some underlying
characteristics that are “fixed”

e Some of these can be

If this does not change over time then the

Probability distribution : random process is strictly stationary
Mean. Variance. Covariance - If these do not “vary” over time then the
) )

random process is weakly stationary

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University



Revision: Mean/Average/Expectation

Mean = Center of mass for the distribution (balancing point)

Number of students

e alfle oo

Student Marks

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University



Our friends in an uncertain world!

 Random or uncertain events may still have some underlying
characteristics that are “fixed”

e Some of these can be

If this does not change over time then the

Probability distribution : random process is strictly stationary
Mean. Variance. Covariance - If these do not “vary” over time then the
) /)

random process is weakly stationary

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
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Revision: Variance = degree of spread (how much
variation is there in the data/outcomes?)

, Medium variance
Low variance

s

High variance

@@O@@W—

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
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Our friends in an uncertain world!

 Random or uncertain events may still have some underlying
characteristics that are “fixed”

e Some of these can be

If this does not change over time then the

Probability distribution : random process is strictly stationary
Mean. Variance. Covariance - If these do not “vary” over time then the
) )

random process is weakly stationary
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Covariance = degree of linear relationship
between data/outcomes

4000
—— Air conditioner — QOutdoor temperature
3500
Can knowledge of one A
3000
random process help us say = B
. = 2500
something about the value of ¢
2 2000
another? 3
<< 1500
1000E
Yes — if their covariance is s Ml
high! o Y
Aeg
2014

Time

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
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2
19|

N
()}

20

Temperature [ C]
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Covariance = degree of linear relationship
between data/outcomes

2200 -
Can knowledge of one 5000 L= 76.11(T-30) +1222.3

o
random process help us say R2=0.784 ¢

1800
something about the value of 1600
?
anothers- 1400
Y £ thoi ] ] 1200
t.as—ll their covariance is 1500 | | |
high! 30.0 32.0 34.0 36.0 38.0 40.0

One way of checking linear relationship (“covariance”) is to plot
the two variables against each other.

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University 14



Covariance = degree of linear relationship
between data/outcomes

- Abdallah’s Marks Faisal’s Marks

Quiz 1 4 4
Quiz 2 8 7
Quiz 3 2 1
Quiz 4 4 5
Quiz 5 1 0
Quiz 6 9 10

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University



Covariance = degree of linear relationship

between data/outcomes

Faisal’s Marks

Abdallah gets high marks
even when Faisal gets low
marks — no linear relation

When Abdallah gets high
marks, so does Faisal —
high linear relation

O <
O : 00g9®00©
o © 3
O o
O
Abdallah’s Marks Abdallah’s Marks

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
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Covariance = degree of linear relationship
between data/outcomes

Faisal’s Marks

Abdallah gets high marks
even when Faisal’s marks
are low — no linear
relation

000,000

Abdallah’s Marks

EE 302 - Probabilistic Methods in Electrica

| Engineer

%)
=
s e ©
=1 @ 9
2 ®
© O
Abdallah’s Marks
ing / Dr. Naveed R. Butt @ Jouf University
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Covariance = degree of linear relationship
between data/outcomes

e Covariance helps us understand if two random processes are
statistically related or not
 Statistically independent processes have zero covariance

* We usually normalize covariance so that it lies between -1 and 1
 Normalized covariance is called “Correlation”

* Noise in communications is mostly assumed to be independent of the
message signal (i.e., we often assume zero correlation between signal

and noise)



How do we write “covariance” mathematically?

Covariance of two C(X,Y): [E[(X—[E[X])(Y—[E[Y])]
random variables X and Y
E[XY]— pypty

Independent random variables

have zero covariance C (X ) Y) =0

For a random process we use the CXX(II’ [2) — [E[(X(Il) — ,UX?(X( 12) - HX))]

autocovariance function
\ Covariance between two

samples of random process X(t)

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
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Mean and Autocovariance of a Weakly
Stationary Process

The mean of a weakly /”X( 1‘) = Uy for all 1

stationary process does
not change with time

The autocovariance function of CXX (tz o tl) for all [ ] aﬂd 12
a weakly stationary process
depends only on the time or

difference between the samples

and NOT on their actual values .
Cxx(T) T=l—4

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University 20



Calculating the autocorrelation function

Rxx(t1,t2) = E[X(t1)X(t;)]

0

T=t2_t1

X(t1) X(t2)



Calculating the autocorrelation function

* For a weakly stationary process X(t), we have
Rxx(t1,t2) = Ryx(t; — t1) = Rxx(7)

Ryy(7) = E[X(1+ DX(1)]

€)

T=t2_t1

X(ty) X(t) = X(t, + 1)



Mean and Autocorrelation of a Weakly
Stationary Process

The mean of a weakly /”X( 1‘) = Uy for all 1

stationary process does
not change with time

The autocorrelation function of |f tz - tl — t4 — t3 t h en

a weakly stationary process

depends only on the time _ — _
difference between the samples RX X (tz tl) T RX X (t4 t3 )

and NOT on their actual values

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
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Autocovariance vs. Autocorrelation of a weakly
stationary process

Autocovariance CXX(T) =E[(X(t + T) — .UX) (X(t) T :uX)]

function

Covariance between two
samples of random process X(t)

Only a minor difference
between the two.
Conceptually very similar.

Correlation between two

samples of random process X(t)

Autocorrelation Ryx (1) =E[X(t + T)X(t)]

function

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University 24



function

Ry (0) = E[X*(1)]

\f,
2

-T 0 T

It can be used to calculate
power of the signal

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University

RXX': r) = Rxx':_”

RXX [I)

It is symmetric

mportant properties of the autocorrelation

At no point it exceeds
the average power
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Ergodic Processes

Random Processes
Wide-sens® Slationgry
Stationary

EE 302 - Probabilistic Methods in Electrical Engineering / Dr.
Naveed R. Butt @ Jouf University
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Ergodic Processes

Xa(1)

Xp(1)

Xc(1)

Xp(1)

\'\ ‘1 f"m — /’\’\ {

0 \—\D/ N N\ A stationary random process is said
EXA(IIJ Statistics along realizations to be “ergodic in the mean” if
EXBI(IIJ

ensamble mean = time mean

U/\/’\/\/\
V \

Statistics along time

EE 302 - Probabilistic Methods in Electrical Engineering / Dr.
Naveed R. Butt @ Jouf University
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Questions?? Thoughts??

A

2

-

o -
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Fourier Transform

EE 302 - Probabilistic Methods in Electrical Engineering / Dr.
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Spectra — the Ghosts in Your Signal




Q. Can we write signals as sums of
periodic functions (frequencies)?

O Vave

VVVV\,

oo

/ \Y%




Baking a Fourier Cake

 Given: Signal shape (time-domain)
* Ingredients: Sinusoids of different frequencies
e Choose: How much of the each ingredient (sinusoid) to use?






* In Fourier Transform, we want to look at signals in terms of a fixed set
of ingredients

* Ingredients : Sinusoids of different frequencies

Ry
- -
L.




* In Fourier Transform, we want to look at signals in terms of a fixed set
of ingredients

* Ingredients : Sinusoids of different frequencies

Ingredient Amount
(sinusoid frequency) (scaling)

f, 1 Add all
W . 0
fs 0.25

[$-F



e How is this shown after Fourier transform?

Ingredient Amount
+ (sinusoid frequency) (scallng)

5 Hz
10 Hz
+ 15 Hz

0.5
0.25

Add all

Scaling

0.5
0.25

L|LL

5 10 15
Frequency (Hz)



* We mostly skip the middle steps

Scaling

Fourier Transform

< 1
Inverse 0.5

Time
Fourier Transform 0.25

Amplitude

5 10 15
Frequency (Hz)



AMPLITUDE

1

TIME

AMPLITUDE

4 AN
\
\ SPECTRAL ENVELOPE
\
N
~
)
i I 1 1 | | T |
we 5 wq 9wy
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Time Domain FTi Frequency Domain
s(t) S(w)
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Power Spectrum

EE 302 - Probabilistic Methods in Electrical Engineering / Dr.
Naveed R. Butt @ Jouf University
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Frequency content of a

 We've seen that
* Fourier Transform can be used to see the
“frequency content” of a signal
e But what if the signal is random?

* Problem: frequency content may change
from one realization to another!

random process

X (t) = Acos(wt + 8).

A and ¢ random variables

-8 -6 -4 -2 0 2 4 6 8

17



Autocorrelation Function to the rescuell

* We've seen that
e Fourier Transform can be used to see the “frequency content” of a signal

* But what if the signal is random?
* Problem: frequency content may change from one realization to another!

* Two important observations can help us out
* 1. The autocorrelation function of a weakly stationary process remains “fixed” between
realizations
» 2. The autocorrelation function contains the same frequencies as the original signal (with
“average power” scalings)

* Solution:
* For arandom process it is better to take the Fourier Transform of the covariance function



For a random process it is better to take the Fourier
Transform of the autocorrelation function!!

* Power Spectrum = Fourier Transform of the autocorrelation function

* Mathematically speaking ...
Syx( = | Ryx(0) exp(=j2nf7) dr

R}(}(( r) = _[ -STXX(.)O) exp(j2nf7) df



Recall...

Ryx(t) =E[X(t + 1)X(t)]

EE 302 - Probabilistic Methods in Electrical Engineering / Dr.
Naveed R. Butt @ Jouf University
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Linear Systems

EE 302 - Probabilistic Methods in Electrical Engineering / Dr.
Naveed R. Butt @ Jouf University
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What happens to a signal as it passes through
a SyStem ? System = channel, filter, etc.

* We shall only consider a special type of systems called LTI (linear
time-invariant systems).

* We shall only consider weakly stationary signals.

Excitation Linear system: Response
x(1) > impulse response > (1)
h(t) ‘




What happens to a signal as it passes through
a SyStem ? System = channel, filter, etc.

e An LTI system is fully characterized by its Impulse Response (IR)

* IR = what output the system gives when the input is an impulse (a theoretical
sharp pulse)

—  » Channel —» h(1)
]

Impulse Impulse response

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
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What happens to a signal as it passes through
a SyStem ? System = channel, filter, etc.

* If we know the impulse response of an LTl system we can find its
output to any signal by using convolution

V(1) = jm W(ox(r-1)dr

— =D

Excitation Linear system: Response
W) —— impulse response > 0
h(t)




What happens to a signal as it passes through
a SyStem ? System = channel, filter, etc.

* LTI system can also be fully characterized by its Transfer Function (TF)
* TF = Fourier Transform of Impulse Response

* TF = what the system does to different frequencies of the signal (e.g., blocks,
allows unchanged, amplifies, attenuates)

. Transfer Function output Frequencies
Input Frequencies

Amplified

:> 1 :> AttenuatedunChanged
/\ /\ /\ /\ /\ /\ 0.5 N /\ /\ Blocked

fi f2 f3 fa fe fe f f2 f3 fa f5 fe f1 f2 f3 fa fs fe



What happens to a signal as it passes through

a system?

System = channel, filter, etc.

* If we know the Transfer Function of an LTI system we can find what it

does to the frequencies of a deterministic signal by using simple
multiplication in frequency domain

Y(f) = H(HX()

Input signal
X(f)
.

A AL A

Y

=)

LTI System

Transfer Function

€

H(f)
A

v

> f

Output signal
Y (f)=X(f)H(f)
F

EE_AA_H

L 4

EE 302 - Probabilistic Methods in Electrical Engineering / Dr. Naveed R. Butt @ Jouf University
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What happens to a signal as it passes through
a SyStem ? System = channel, filter, etc.

* If we know the Transfer Function of an LTI system we can find what it
does to the power spectrum of weakly stationary random signal by

Syy(H = [HNOI"Syx () H(PP = HOH(f)



Questions?? Thoughts??

A

2

-

o -
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